
 1

MINOS PULSER BOX ELECTRONICS

1. Overview

Each pulser box can drive up to twenty LEDs. Only one of these LEDs can be pulsed
at any one time. Pulse widths can be set from 15 to 36nS, and pulse height selected
via a 12 bit digital to analogue converter. The pulsing can be in a continuous or preset
count mode at a pre-selected repetition rate. A trigger LED is provided that pulses in
synchronisation1 with a selected LED. Front panel indicators show the status of the
system, and BNC connectors are provided for the following: monitoring the pulsing
signal, external triggering and inhibit signal input.

Control of all functions is via an RS232 serial connection to the onboard
microcontroller, which in sets the requested height, width and repetition rate for a
selected LED.

A pulser box has one control card, which feeds two LED driver cards. Each driver
card has ten outputs and is completely interchangeable since the control card
determines address decoding. The control card has two output edge connector sockets,
a driver card plugged into the upper socket drives LED’s 1 to 10 and a driver card
plugged into the lower socket drives LED’s 11 to 20. The system can be run with only
one driver card connected if required.

Note 1. Far detector main pulse delayed 245nS with respect to trigger pulse.

 Near detector main pulse has a selectable delay of zero to 290nS.

 2

2. Control Card

 The main component is U1, is a PIC 16F877 microcontroller running at a clock speed
of 4MHz. Serial communication is via U2. The PCB was designed to accommodate a
MAX489 IC in this position for RS485, but the standard was subsequently revised to
RS232 requiring a modification to the PCB (Note 7.2.1). Inputs MCLR, RB6 and
RB7 are reserved for onboard programming and are not normally used. An address
switch is connected to ports RC0 to RC4, originally designed to identify each Pulser
box, this function is now accomplished through the Ethernet to RS232 converter, and
for normal operation the address switch should be set to 111110.

Varying the voltage applied to a 22R series resistor sets LED current and thus the
pulse height. This voltage is set by the programmable voltage source formed by the
serial digital to analogue converter, U3, dual op-amp U1a/b and Darlington transistor
Q1. The controlled voltage can be set from 4 to 12 volts, using the full range of the
10-bit digital to analogue converter.

A LED pulse is accomplished as follows: Output RE2 is set high, turning on the
current to the selected LED via edge connector pins 6 and 27, simultaneously with the
onboard trigger LED current switch formed by Q6 and Q3. After a delay of 2uS,
giving time for the current to stabilise, RE1 is set high to start the pulse via U4c, U5a
out to edge connector pins 7 and 26. Provision is made for an inhibit signal at one
input of U5a, a low on this input immediately halts pulsing. Input RE0 enables the
controller to sense this event so that it can resume any preset sequence when this line
is released without losing count of pulses in a sequence. The programmable delay line
U9 determines the on time of the pulse, after the selected delay plus a short fixed
delay through U2 the current to the selected LED via edge connector pins 8 and 25 is
turned off. In order to ensure that the trigger LED is coincident with a main LED
pulse it to is driven by the same output lines as above but with the following minor
differences. The pulse period delay is provided by U2, this is a fixed time of 30nS.
The LED current is set by a fixed 15v into 56R. An additional TTL pulse monitor
output is provided via U5 b, c and d.

Provision has been made for an external trigger pulse. This input requires a high to
low transition and will use preloaded pulse height, width and LED selections
previously sent to the microcontroller. The monostables U8 and U16 switch on the
current and initiate the pulse in place of RE1 and RE2 via the OR gates U4c and U4d.
Note that the front panel ‘Pulsing’ indicator is only active during software-instigated
runs and does not indicate externally triggered events.

Unique selection decoding for each LED is achieved via the 3 to 8 line decoders, U11
to U14, with outputs L1 to L10 routed to the upper connector, and outputs L11 to L20
routed to the lower connector.

 3

Q3 is a voltage output temperature sensor that can be used to monitor conditions
inside the pulser box if required.

The Far detectors Pulser Boxes have a requirement for a 250nS delay between LED
pulses and the trigger pulse. This has required the addition of a small board and the
cutting of two tracks (Note 7.2.2).

The Near Detector boards have been modified to allow the number of accepted
external trigger pulses to be preset. (Note 7.2.4). This also required a firmware update
to P12. The trigger pulse delay has also been made more flexible by the addition of a
switch selectable delay line (Note 7.2.3). This has an overall range of 0 to 290nS. This
switch must always have one of 1 to 5 ON (0 to 40nS in 10nS steps) and one of 6 to
11 ON (0 to 250nS in 50nS steps). Note that switch 12 is not used in this application.

Note: there is a four-way pin connector below U4, labelled GATE, this must have a
shorting link fitted over the first two pins on the left hand side when viewing the
board from the component side.

 4

 5

3. LED Driver Boards

 Fig. 2 shows one of ten identical LED driver stages from an LED driver board and its
associate drive waveforms.

 Fig 2.

 The applied voltage, which determines the pulse height, is controlled by a 10-bit
DAC over the range 4 to 12v. When the signal at A goes high, the driver stage is
turned on—voltage is applied to the 22R resistor, the resulting current is shunted to
ground via the left-hand FET. This occurs typically a microsecond before the actual
pulse, to give the current time to stabilise. When the signal at B goes low, current
flows through the LED, which emits light. A short time later, signal C goes high, and
the current is shunted to ground via the right-hand FET; the LED is then turned off.
The delay between B turning off and C turning on determines the pulse width; a
programmable delay line on the control board, gives a pulse width of 15–36 ns in 3 ns
steps. The current continues to be shunted to ground until the signal at A goes low
again some 1.5uS after the end of the light pulse, removing the current. Other
components on the board are 74AC02s used as MOSFET drivers for each stage and
two 74F04s employed as buffers for the signal lines, one for each group of 5 drivers
per board.

 6

 7

4.Control card tests

Using a test lead as defined in appendix 1, make connections to a suitable power
supply. The maximum current consumption is around 200 mA for each of the positive
supplies and less than 10 mA for the negative supply. A three wire serial connection
should also be made between the board under test and a PC or laptops serial port1.
When the supplies are switched on, the Power and Ready LEDs should illuminate.

A simple Visual Basic programme, Test.exe, is available to exercise all the functions
of the board. First ensure that the board address switch is set to 1 (11110), and then
send the command STARTUP, the REPLY box should display ‘OK’. This simple
test verifies the communication link to the board, and subsequent commands should
be received with no problems.

Test the onboard trigger LED by first entering the pulse to pulse delay by settting the
DEL L (delay low) slider to 10, then entering this value by selecting DEL L . The
DEL H setting defaults to 1 and can be left untouched. Now select Continuous, the
trigger LED should illuminate. Now select Stop to extinguish the led. Note: the pulser
should always be stopped before new commands are entered. Increasing DEL L to
255 should visibly dim the LED.

Pressing the Inhibit switch whilst the pulser is running will stop any LED pulsing, this
can be confirmed by observing the trigger LED which will be extinguished until the
switch is released. Observe the monitor socket with an oscilloscope, a 30nS negative
going TTL signal coincident with each light pulse should be seen. The control card
incorporates a temperature sensor which can be read at any time the when pulsing is
not active. To complete functional checks of pulse height and width settings, an LED
driver card must be attached, see next section.

 8

5. LED Driver card tests

 Note: Turn off all power to the control card before plugging in a driver card.

As previously stated control cards have two output edge connector sockets, a driver
card plugged into the upper socket drives LED’s 1 to 10 and a driver card plugged
into the lower socket drives LED’s 11 to 20. For initial tests it will be found best to
use the lower card position, then the assembly will stand conveniently on the
workbench.

The driver card can be loaded with any number of LEDs from one to ten, and no harm
will occur if none are fitted. Looking into the sockets the lowest numbered socket will
be on the left for either driver card.

Now reapply power and check that communication is re-established by sending the
STARTUP command once again. Before an LED can be pulsed the following
parameters must be set-up via the control programme:

1. Box number - defaults to 1, no need to enter, provided the board address switch

is set to 1.
2. LED number - Remember the lower card carries LEDs 11 to 20. Remember to

press button to load.
3. Pulse Width – Select from 0 to 7, 0=min 7=max.
4. Height is selected by two bytes, Hhigh and Hlow the height is displayed as a

decimal value in the Height box, after entering these numbers they must be
loaded into the converter by pressing DAC. It is possible to verify this action by
checking the voltage at Fuse1, located at the centre of the driver card. This has a
range of 4 to 12v over the full range of height settings.

5. Set the pulse-to-pulse delay as previously. DEL H=1, default, DEL L =10, this is
the minimum delay that can be safely applied and will give enough light from the
LED to be readily visible.

6. NUM H and NUM L are used to enter the number of pulses in a sequence. Note
that NUM H is a multiplier for NUM L and with a short pulse-to-pulse delay
these will have to be quite high to enable the LED pulse to be seen for more than
a few seconds.

7. At this point all the parameters have been loaded, now all that remains is to
select Continuous, and the selected LED should illuminate. Always terminate
this action with STOP for a safe exit. Always stop the pulsing before changing
any parameters, including reading the Temperature.

8. Sequence will pulse the LED using the selected parameters for the preset
number of pulses entered in step 6. A sequence run can be terminated at any time
if required using STOP.

9. Test all LED drivers by selecting the appropriate LED number and repeating
steps 3 to 9 as required.

 9

6. Control card versions

The control card PCB was originally designed for RS485 communications, with the
option of a relatively easy modification (Note 7.2.1) to RS232 if required. The
majority of pulser boxes now have RS232 as the common standard, the only boxes
still using the RS485 standard are the Cal Det (CERN), and Near Detector 40 LED
box, in the latter case this is only for internal communications, the outside world still
sees the box interface as RS232.

An addition to all control cards was the incorporation of a delay in the output of the
main pulse with respect to the trigger pulse. This modification required the addition
of a small board to the lower right hand edge of the control card, and this exists in two
versions, a fixed 245nS delay. (Note 7.2.2) and a variable 0 to 290nS delay with 10nS
steps. (Note 7.2.3)

A specific requirement for the near detector boards was the ability to define a preset
number of trigger pulses. To achieve this goal a modification to the external trigger
circuit was made (Note 7.2.4).

The last major modification proposed for the control cards was the extension of the
pulse width settings available to give more light if required. By changing the existing
3-wire parallel programmable delay line (60A-028) to a serial programmed delay line
(DS 10215-50) it was possible to extend the selection of widths available. In order to
keep compatibility with the original boards, widths 0 to 7 are the same, and control
software written for the original version of the board will work ok. The delay steps are
in increments of 3nS up to 50nS, then in 25nS steps up to a maximum of 143nS.
(Note 7.2.6).

During the assembly of the boards the DS100-50 delay line became obsolete. A
suitable replacement was obtained (DS1100-50) but unfortunately this was only
available in an 8-pin package, so necessitates modification to the control card. Only a
few of these were fitted, but if future repairs to boards require replacement of this part
then follow the instructions given (Note 7.2.5).

Some of the modifications mentioned above require new versions of the firmware.
The actual version of firmware is clearly marked on the 40-pin microcontroller chip
(e.g. P10.) The following table lists the modifications and firmware in use at the
various sites.

Detector Firmware Trigger delay External trigger Extended pulse width
 Far P10 245nS Standard No
 Near P12 0- 290nS Software preset No
 CalDet P14 0- 290nS Software preset Yes

 For all versions the onboard address switch must always be set to 1 (off), the only
exception to this rule is the lower most board in the 40 LED Near detector box, which
is set to 2 (off).

 10

7. PCB Modifications

7.1: Modification to LED Driver card

This is required on all driver boards to correct a design error.

 Fig.4

Cut the three tracks as shown in photo:

 From edge connector pin 26 to pin 14 on U12
 Between pin 12 and pin 13 on U12
 Between pin 13 and pin 14 on U12

Add a wire link from edge connector track (pin 26) to U12 pin 12.

 11

7.2: Modifications to LED Control board

 Fig.5
7.2.1: Conversion to RS232

The standard LED Control board was primarily designed for an RS485
communications link, so normally a MAX 489 IC would be in the U2 position and
R26 & R27, both 120R, would be fitted.

 In the final system a RS232 communication was implemented via an Ethernet
adaptor for each Pulser Box. These are installed at both the Near and Far Detectors.

To convert the board to RS 232 the following modifications are required:

1. Remove IC. MAX 489 (U2) if fitted.

2. Remove R26 & R27 (120R) if fitted.

3. Cut the tracks on the top side of the board as indicated by the arrows

 U1, P25 to U2, P5
 U1, P26 to U2, P2

 4. Now link track from U1, P25 to R26 right hand end (connects to U2, P11)
 And link track from U1, P26 to R26 left hand end (connects to U2, P12)

5. Fit 10uF 16v Tant. Caps as C25, C26, C27 and C28. Follow marked polarity.

Now do the modifications to the underside of the board before fitting the MAX 232.

 12

Conversion to RS 232 – Underside mods.

 Fig. 6.

6. Cut three connections to the OV. Track U2, pins 3, 6 and 7 as arrowed.

7. Also cut the track to U2, pin 4, below the C27 connection.

8. Now fit the MAX 232 IC. In the U2 position pin 1 to pin 1, this leaves two

vacant holes (8 & 9) since this IC has only 14 pins.

9. Finally fit a link from the OV track to U11 pin 15 (or pin 13 on the MAX 232)

 13

7.2.2: Adding the 250nS Delay board to the Control card

Cut track from U5 pin 4, on the right hand side of the plated through hole.

 Fig.7 Pin 1

M2.5 X 12 with 2 nuts under each end of the board as spacers.

0.5 inch from edge of board.

Link:

1. Delay board Pin1 to +5v.
2. Delay board Pin 2 to 32 way skt. Pin 7.
3. Delay board Pin 3 to 74F00 (U5) Pin 4.
4. Delay board Pin 4 to 60A028 (U9) Pin 4.
5. Delay board Pin 5 to 0v.

Now cut track on topside of board – see next page.

 14

 Fig. 8.

 Cut track to DS1000-50 at Pin 12

 15

7.2.3: Adding the variable Delay board to the Control card

The variable delay board is assembled on the single sided PCB (Appendix PCB-4)
Note that the 12-way switch is actually mounted on the trackside of the board.

 Fig.9.

 16

 Track cut here

 Fig.10.

Once the wiring has been completed the board is turned over and mounted on two
screws in the same manner as the previously shown fixed delay board. The switch is
then accessible from the topside as shown overleaf.

 17

 Fig. 11.

The delay switch is used to combine the delays from two delay line IC’s.
Switches 1 to 5 give a delay of 0 to 40nS in 10nS steps and switches 6 to 11 give a
delay of 0 to 250nS in 50nS steps. Ensure that only one switch of each group is on at a
time. Fig.11. illustrates no delay selected (sw1=on, sw2=on). Note that switch 12 is
connected in parallel with switch 11 and is not used. Although primarily designed for
use at the Near detector, a control card fitted with this switched delay can be used at
the far detector by matching the delay time. This is achieved by selecting sw1=on and
sw10=on.

 18

7.2.4: External Trigger modification for Near Detector boards.

 Fig. 12.

Note: No tracks to cut.

1. Link U9 Pin 3 to U9 Pin 11, to U8 Pin 3, to U1 Pin 28.

2. Link U8 Pin 1 to U8 Pin 9.

3. Link U8 Pin 12 to U1 Pin 27.

4. Add 220pF between U8 Pins 6 and 7.

5. Add 120K between U8 Pins 7 and 16.

 19

Full view of the External trigger mod and Far detector trigger delay

 Fig. 13.

 20

7.2.5: Fitting the DS1100-50 (replaces obsolete delay line DS1000-50)

 Fig. 14. Cut track here.

Cut track here (pin 10 on original 14 pin chip) and link back to pin 6 of the
replacement DS1100-50, as shown by the yellow arrow. This is the track which routes
under the IC and exits at the top edge of the picture.

 Fig. 15.

 On the under side of the board make a link from the OV track to pin 4 of the
DS1100-50, after removing lacquer coat.

 21

 7.2.6: Extended pulse width range

If this facility is required, first remove the 60A-028 delay line.
Now carefully mount the DS1021-50 on to a DIL adaptor. Positioning can be aided by
the use of a small drop of SM adhesive under the centre of the package. Use a fine
soldering iron, any bridging can be successfully removed with solder wick.

 Fig. 16.

 Cut track here, then solder in adaptor.

 Note: Track is also cut here for the trigger delay mod.

 22

The violet wires belong to a previously fitted trigger delay board. The indicated wire
shown in Fig. 10 as routed to pin 4, now must be connected to pin1. All new wiring
for this modification is in blue.

 Fig.16.

 Cut track here.

Underside wiring: Connect pins 4,5,6,10,12,13 and 14 to OV (Pin 7).
Leave pin 3 unconnected.
Rewire from cut track below yellow arrow to pin 2.
Run wire from lower track (orange arrow) to pin 15. When modifying boards in the
future it would be easier to connect to the solder pad at the end of this track as
indicated by the blue arrow.

 23

Appendix 1: Control card test lead

Construct a test lead by wiring a 32 way DIN 4162 single row socket as follows:

1. +5v
2.
3. Green LED cathode (Pulsing indicator)
4. Yellow LED cathode (Ready indicator)
5. Green LED anode (Pulsing indicator)
6. Yellow LED anode (Ready indicator)
7. +15v
8.
9.
10.
11. Reset switch pin1 (Normally open)
12.
13. Inhibit switch pin1 (Normally open)
14. Reset switch pin2 (Normally open)
15. Inhibit switch pin2 (Normally open)
16. External trigger coax socket ground
17. Monitor coax socket ground
18. Red LED cathode (Power indicator)
19.
20.
21.
22. –15v
23. Red LED anode (Power indicator)
24.
25. Monitor coax socket centre pin
26. External trigger coax socket centre pin
27. Serial port1, pin 2
28. Serial port1, pin 3
29.
30.
31. Serial port1, pin 5
32. OV

 24

Appendix 2: Firmware

Code for the PIC16F877 was written in assembler, using the free Microchip MPLAB
integrated development system and compiled into HEX code for programming using
the same.

The original firmware labelled P10 is now superseded by P12, which can be used on
all control cards except those with the extended pulse width capability, which must
use the dedicated firmware P14.

Hex code files for the three versions P10, P12 and P14 are used with a suitable
programmer, to programme blank PIC 16F877 microcontrollers. They should in
addition be configured to operate with a high-speed crystal oscillator and the
watchdog timer should be disabled.

Firmware listing for P12
;Addressable Pulser Box with RS485 or RS232 serial link

;Rev1.External pulse counting added
;Rev2.Continuous external pulse mode added

; PROGRAMMABLE LED PULSER

; CODE FUNCTION PARAMETERS REPLY
; ---

; A Startup none K

; B Pulse height top 2 bits 0-3 K

; C Pulse height low byte, Nh,Nl. K K [wait 2mS]

; D Pulse width 0-7 K

; E Select LED 1-20 ** K

; F Pulse multiplier,0-255. Nh,Nl. K K

; G No. of pulses, 0-255. Nh,Nl. K K

 25

; H Period multiplier,0-255. Nh,Nl K K

; I pulse period, 0-255. NH,Nl K K

; J Start sequence K

; K Start continuous K

; L Read temperature K

; M Send temperature high byte 000000vv

; N Send temperature low byte vvvvvvvv

; O Load D/A with pulse height K

; P Ext. triggered sequence K

; Q Continuous Ext. triggering K

; _X Stop sequence or continuous K

; * Nh=0-F, Nl=0-F

; **ASCII for LEDs 1-7=97-103, 8-14=105-111, 15-20=113-118

; All commands except stop must be preceded by the box number.
; Box numbers 0-31 are represented by decimal ASCII codes 96-127.

;---
 list p=16F877
 include <p16F877.inc>

;-------Register Files-----------------------
tmro equ 0x01 ;0,2 (Page locations)
pcl equ 0x02 ;0,1,2,3
status equ 0x03 ;0,1,2,3
fsr equ 0x04 ;0,1,2,3
porta equ 0x05 ;0
portb equ 0x06 ;0,2
portc equ 0x07 ;0
portd equ 0x08 ;0
porte equ 0x09 ;0
pclath equ 0x0A ;0,1,2,3
intcon equ 0x0B ;0,1,2,3
pir1 equ 0x0C ;0
rcsta equ 0x18 ;0
txreg equ 0x19 ;0
rcreg equ 0x1A ;0

 26

adresh equ 0x1E ;
adcon0 equ 0x1F ;
topt equ 0x81 ;1,3
trisa equ 0x85 ;1
trisb equ 0x86 ;1,3
trisc equ 0x87 ;1
trisd equ 0x88 ;1
trise equ 0x89 ;1
pie1 equ 0x8C ;1
pie2 equ 0x8D ;1
pcon equ 0x8E ;1
txsta equ 0x98 ;1
spbrg equ 0x99 ;1
adresl equ 0x9E ;1
adcon1 equ 0x9F ;1
eedata equ 0x10C ;2
eeadr equ 0x10D ;2
eedath equ 0x10E ;2
eeadrh equ 0x10F ;2
eecon1 equ 0x18C ;3
eecon2 equ 0x18D ;3

wait equ 0x20 ;allocate registers to variables
rxser equ 0x21
intdex equ 0x22
intdex1 equ 0x23
txdata equ 0x24
rxdata equ 0x25
delylp equ 0x26
lobyte equ 0x28
hibyte equ 0x29
pwidth equ 0x2A
rxtemp equ 0x27
SLED equ 0x2B
curnth equ 0x2C
byte equ 0x2D
nibble equ 0x2E
number equ 0x2F
count equ 0x30
length equ 0x31
pspace equ 0x32
mult1 equ 0x33
mult2 equ 0x34
countx equ 0x35
rep equ 0x36
rxnum equ 0x37
boxnum equ 0x38
tmpbox equ 0x3A
sdely equ 0x3B
HNUM equ 0x3C

 27

THNUMequ 0x3D
LNUM equ 0x3E
TLNUM equ 0x3F
HDEL equ 0x40
THDEL equ 0x41
LDEL equ 0x42
TLDEL equ 0x43
LEDnum equ 0x44
curntl equ 0x45
d equ 0x46
chtmp equ 0x47
cltmp equ 0x48 ;Note 7F is the last available register

rp0 equ 0x05
rp1 equ 0x06

w equ 0 ;Result to go into working register (accumulator)
f equ 1 ;Result to go into a file register.
c equ 0 ;Carry flag (located in STATUS register)
dc equ 1 ;Digit carry "
z equ 2 ;Zero flag "
pd equ 3 ;Power Down bit "
to equ 4 ;Time-out bit "

 org 0x04
 org 0x05 ;start of program memory
;--
;Setup PORTS: 0=output, 1=input

 BCF status,rp1 ;clear page 2/3
 BSF status,rp0 ;select page 1
 MOVLW B'10001110'
 MOVWF adcon1 ;a/d0 selected, remainder digital
 MOVLW B'00000001'
 MOVWF trisa ;PortA,0 A/D input, remainder outputs
 CLRF trisb ;PortB all outputs
 MOVLW B'10011111'
 MOVWF trisc ;PortC,6 inputs, 2 outputs
 MOVLW B'00010000'
 MOVWF trisd ;PortD, 7 outputs,1 input for counter
 MOVLW B'00000001'
 MOVWF trise ;PortE, E0=i/p,E1=o/p
 Movlw 0x01 ;set prescaler
 movwf topt ; " "
 BCF status,rp0 ;select page 0
 bcf status,rp1

;Pulsing OFF, drivers OFF

 BCF porte,2 ;disable LED and driver

 28

 BCF porte,1 ;no pulsing
 MOVLW 0
 MOVWF portd ;current to zero
 MOVLW 0
 MOVWF porta ;drivers off
 MOVLW 0
 MOVWF portb ;drivers off
 Movwf pwidth ;width to 0
 movwf curnth ;current hi-byte to 0

;Deselect all LEDs

 movlw 0x00
 movwf LEDnum
 movwf portb ;All LEDs off

;Set baudrate

 BCF status,rp1 ;clear page 2/3
 BSF status,rp0 ;select page 1
 MOVLW d'25' ;BRG value for 9600 baud
 ;from 4.00Mhz, brgh=1 (from SPRG Arc. prog)
 MOVWF spbrg ;put into spbrg reg
 MOVLW B'00000100' ;sync=0(bit 4),brgh=1(bit 2)
 MOVWF txsta ;put into txsta
 BCF status,rp0 ;set backto page 0

;Read Address switches

 MOVF portc,w
 ANDLW b'00011111' ;only look at 5 lower bits
 ADDLW b'01100000' ;box address as ASCII control code
 MOVWF boxnum ;save the pulser address

;--

 GOTO Start

;--

;*******SUB_TXCHARACTER*****

txchar bsf PORTC,5 ;Note nxchar only used to setup TX registers
nxchar MOVLW 0x09 ;setup loop for 9 characters
 MOVWF intdex
 bcf STATUS,C
txloop btfss STATUS,C
 bcf PORTC,6
 btfsc STATUS,C

 29

 bsf PORTC,6
 call dely83
 rrf txdata,1
 decfsz intdex,1
 goto txloop
 bsf PORTC,6
 call dely83
 bcf PORTC,5
 return

;*******SUB_RXCHARACTER*****

rxchar bcf PORTC,5 ;Put MAX485 into RX mode
sbit btfsc PORTC,7
 goto sbit ;wait for start bit
 movlw 0x08 ;pick up 8 bits
 movwf intdex
 call dely46 ;delay to middle of start bit
rxloop call dely83
 nop
 bcf STATUS,C ;sample incoming bit
 btfsc PORTC,7
 bsf STATUS,C
 rrf rxdata,1
 decfsz intdex,1
 goto rxloop
waitend btfss PORTC,7
 goto waitend

return ;on exit character in rxdata

;*******SUB_oK***********

ok MOVLW 0x4B ;Load 'K'
 movwf txdata
 call txchar ;and send
 return

;*******SUB_ENDSEQ*******

endseq MOVLW 0x53 ;Load 'S' to denote end of sequence
 movwf txdata
 call txchar ;and send
 return

;*******SUB_HEIGHTh*********
;sets the top 2 bits on D/A

heighth call short
 rlf rxnum,f
 rlf rxnum,f

 30

 rlf rxnum,f
 rlf rxnum,f
 rlf rxnum,f
 rlf rxnum,f
 movf rxnum,w
 movwf curnth
 call ok
 return

;*******SUB_HEIGHTl*********
;sets the lower 8 bits on D/A

heightl call hex ;Read number 0-255
 movf byte,w
 movwf curntl ;Save the current setting
 return

;*******SUB_NUMBER**********

short call rxchar ;Read number 0-7
 MOVF rxdata,w
 MOVWF rxnum ;copy new data into rxnum
 MOVWF rxtemp ;and temp file.
 MOVLW 0x30
 ANDWF rxtemp,w
 xorlw 0x30
 btfss status,z ;Wait for a number
 goto short
 MOVLW 0x07
 ANDWF rxnum,w ;only look at first three bits
 MOVWF rxnum ;number in temporary store
 return

;*******SUB_SELECT*********

select call rxchar ;Read the LED selection 0-20 (0=LEDs OFF)
 movf rxdata,w ;LEDs are represented by ASCII code groups.
 movwf SLED ;LEDs 0-7 = 96-103
 btfsc SLED,4 ;LEDs 8-14 = 105-111
 goto HiNUM ;LEDs 15-20 = 113-118
 btfsc SLED,3 ;Groups are detected by looking at bits 3 & 4
 goto MidNUM ;of the ASCII code, this separates them into
 movlw 0x07 ;high,mid or low for the relative decoders.
 andwf SLED,w
 movwf LEDnum
 movlw b'00001000'
 iorwf LEDnum,f
 goto selLED
HiNUM movlw 0x07
 andwf SLED,w

 31

 movwf LEDnum
 movlw b'00100000'
 iorwf LEDnum,f
 goto selLED
MidNUM movlw 0x07
 andwf SLED,w
 movwf LEDnum
 movlw b'00010000'
 iorwf LEDnum,f

selLED nop ;Selected LED in LEDnum
 call ok
 return

;*******SUB_PULSE**********

pulse bsf porte,1 ;Output pulse ,approx 2us. Bit set used to
 NOP ;avoid conflict with serial data on RA2 & RA3
 bcf porte,1 ;End pulse
 call ok
 return

;*******SUB_DELAY46***

dely46 MOVLW 0x0E
delex MOVWF intdex1
d34lop decfsz intdex1,1
 goto d34lop
 nop
 return
dely83 MOVLW 0x1D ;adjust to match baud rate
 nop
 nop
 goto delex

;*******SUB_HEX*******

;get the hi-nibble
hex nop
hexhi call rxchar ;Read hi-nibble 0-F Hex
 MOVF rxdata,0
 MOVWF byte ;copy new data into BYTE
 MOVWF rxtemp ;and temp file.
 MOVLW 0x30
 ANDWF rxtemp,0
 xorlw 0x30
 btfsc status,z ;Wait for a number
 goto shift

;If not a number now test for a letter
 MOVF byte,0 ;Copy nibble back

 32

 MOVWF rxtemp ;to temp file.
 MOVLW 0x40
 ANDWF rxtemp,0
 Xorlw 0x40
 btfss status,z ;If this is a letter continue, else try again
 goto hexhi
 MOVLW 0x01
 ADDWF byte,1 ;Add 1 to ASCII
 BSF byte,3 ;Now convert to hex nibble A-F

shift SWAPF byte,1
 MOVLW 0xF0 ;mask off lower nibble
 ANDWF byte,1 ;BYTE is now upper nibble, range 0-Fh
 call ok

;Get the lo_nibble

hexlo call rxchar ;Read lo-nibble 0-F Hex
 MOVF rxdata,0
 MOVWF nibble ;copy new data into NIBBLE
 MOVWF rxtemp ;and temp file.
 MOVLW 0x30
 ANDWF rxtemp,0
 xorlw 0x30
 btfsc status,z ;If not a number look for a letter
 goto join

;If not a number now test for a letter

 MOVF nibble,0 ;Copy reprate byte
 MOVWF rxtemp ;back to temp file.
 MOVLW 0x40
 ANDWF rxtemp,0
 xorlw 0x40
 btfss status,z ;If not letter or a number try again
 goto hexlo
 MOVLW 0x01
 ADDWF nibble,1 ;Add 1 to ASCII
 BSF nibble,3 ;Now convert to hex nibble A-F

join MOVLW 0x0F ;mask off upper nibble
 ANDWF nibble,0 ;NIBBLE is now lower nibble, range 0-Fh
 ADDWF byte,1 ;BYTE becomes the full hex byte
 movlw 0x00
 movwf rxdata ;clear characters which can be read in
Main loop
 call ok ;ie C,D,E or F
 return

 33

;*******SUB-PULSEH(Multiplier)*****

pulseh call hex
 movf byte,0
 movwf HNUM
 return

;*******SUB-PULSEL*****

pulsel call hex
 movf byte,0
 movwf LNUM
 return

;*******SUB-DELAYH*****

delayh call hex
 movf byte,0
 movwf HDEL
 return

;*******SUB-DELAYL*****

delayl call hex
 movf byte,0
 movwf LDEL
 return

;*******SUB-WIDTH*******

width call short
 rlf rxnum,f
 movlw b'00001110'
 andwf rxnum,f
 movf rxnum,w
 MOVWF pwidth
 movwf porta ;output combination
 call ok
 return

;*******SUB_SEQ****loop escape with 'X'*******

seq call ok
 movlw b'10010000' ;Turn on internal UART to receive
 movwf rcsta

 movf LEDnum,w ;Select LED
 movwf portb
 movf HNUM,w ;Transfer number of pulses high byte
 movwf THNUM ;to temp reg

 34

nextn movf LNUM,w ;Transfer number of pulses low byte
 movwf TLNUM ;to temp reg

 bsf porta,5 ;Active LED on, Ready LED off

nextp bsf porte,2 ;enable LED and driver
 nop
 bsf porte,1 ;Output pulse ,approx 2us.Note bit set used
 bcf porte,2 ;Disable LED driver
 nop
 nop
 nop
 nop ;wait for current to drain
 nop
 nop
 nop
 bcf porte,1 ;now safe to end pulse sequence
 movf HDEL,w ;Transfer delay loop high byte
 movwf THDEL ;to temp reg
nextd movf LDEL,w ;Transfer delay loop low byte
 movwf TLDEL ;to temp reg

inhib btfss porte,0 ;test hardware inhibit (low=inhibit)
 call inhibit ;loop until inhibit=1 or UFIN

 movf rcreg,w ;Stop all addressed pulsers?
 xorlw 0x5F ;compare with '_'
 btfsc status,z
 goto Xfin

; call delayb ;Adjust delay to set period (not in use)

 decfsz TLDEL,f
 goto inhib ;loop until delay low byte is zero
 decfsz THDEL,f
 goto nextd ;loop until delay high byte is zero

 decfsz TLNUM,f
 goto nextp ;loop until number low byte is zero
 decfsz THNUM,f
 goto nextn ;loop until number highbyte is zero
 goto fin ;End of sequence

Xfin movf rcreg,w ;wait for 'X'
 xorlw 0x58
 btfss status,z
 goto Xfin

fin bcf porte,2 ;Disable LED driver
 movlw 0x00 ;turn off UART

 35

 movwf rcsta
 call ok
 return

;*******SUB_EXTRUN****loop escape with '_X'*******

extrun call ok
 movlw b'10010000' ;Turn on internal UART to receive
 movwf rcsta

 movf LEDnum,w ;Select LED
 movwf portb
 movf HNUM,w ;Transfer number of pulses high byte
 movwf THNUM ;to temp reg

 bcf status,rp1
 bsf status,rp0
 movlw 0x00
 movwf trise ;Temporary enable Inhibit line as output
 bcf status,rp0
 bcf status,rp1
 bcf porte,0 ;Inhibit pulsing
 bsf porta,5 ;Active LED on, Ready LED off
 bsf portd,5 ;enable external trigger
 nop
 nop
 nop
 bsf porte,0 ;Enable pulsing
 bcf status,rp1
 bsf status,rp0
 movlw 0x01
 movwf trise ;Re-enable Inhibit line as input
 bcf status,rp0
 bcf status,rp1

reload movf LNUM,w ;Transfer number of pulses low byte
 movwf TLNUM ;to temp reg

extrig btfsc portd,4 ;look for trigger input low
 goto chk
 btfss portd,4
 goto nxtopt
chk btfss porte,0 ;test hardware inhibit (low=inhibit)
 call inhibit ;loop until inhibit=1 or UFIN

 movf rcreg,w ;Stop all addressed pulsers?
 xorlw 0x5F ;if '_' is received.
 btfsc status,z
 goto finX
 goto extrig

 36

nxtopt call delayb
 decfsz TLNUM,f
 goto extrig ;go back to wait for next trigger pulse
 decfsz THNUM,f
 goto reload ;not end of sequence yet!
 goto finS ;Trigger count limit, so exit routine.

finX movf rcreg,w ;wait for 'X'
 xorlw 0x58
 btfss status,z
 goto finX

finS bcf porta,5 ;Active LED off
 bcf portd,5 ;disable external trigger
 movlw 0x00 ;turn off UART
 movwf rcsta
 call ok ;send 'K' for end of sequence
 return

;*******CONTRIG**********

ctrig call ok
 movlw b'10010000' ;Turn on internal UART to receive
 movwf rcsta

 movf LEDnum,w ;Select LED
 movwf portb
 bsf porta,5 ;Active LED on, Ready LED off
 bsf portd,5 ;enable external trigger
 bsf porte,0 ;Enable pulsing

tstex btfss porte,0 ;test hardware inhibit (low=inhibit)
 call inhibit ;loop until inhibit=1 or UFIN

 movf rcreg,w ;Stop all addressed pulsers?
 xorlw 0x5F ;if '_' is received.
 btfsc status,z
 goto fini
 goto tstex

fini movf rcreg,w ;wait for 'X'
 xorlw 0x58
 btfss status,z
 goto fini
 bcf porta,5 ;Active LED off
 bcf portd,5 ;disable external trigger
 movlw 0x00 ;turn off UART
 movwf rcsta
 call ok ;send 'K' for end of sequence

 37

 return

;*******DELAY************

delayb MOVLW 0xFF ;Minimum delay for period if reqd.
 MOVWF sdely
dly DECFSZ sdely,F
 GOTO dly
 return

;*******SUB_CONTIN****loop escape with <nul X>***** **

contin call ok
 movlw b'10010000' ;Turn on internal UART to receive
 movwf rcsta
 movf LEDnum,w
 movwf portb ;Select active LED
infin movf HNUM,w ;Transfer number of pulses high byte
 movwf THNUM ;to temp reg
nxtn movf LNUM,w ;Transfer number of pulses low byte
 movwf TLNUM ;to temp reg

 bsf porta,5 ;Active LED on, Ready LED off

nxtp bsf porte,2 ;enable LED driver
 nop
 bsf porte,1 ;Output pulse ,approx 2us.Note bit set used
 bcf porte,2 ;Disable LED driver
 nop
 nop
 nop
 nop ;wait for current to drain
 nop
 nop
 nop
 bcf porte,1 ;now safe to end pulse sequence
 movf HDEL,w ;Transfer delay loop high byte
 movwf THDEL ;to temp reg
nxtd movf LDEL,w ;Transfer delay loop low byte
 movwf TLDEL ;to temp reg

ihib btfss porte,0 ;test hardware inhibit (low=inhibit)
 call inhibit ;loop until inhibit=1 or UFIN

 movf rcreg,w ;Stop all addressed pulsers?
 xorlw 0x5F ;compare with '_'
 btfsc status,z
 goto Yfin

; call delayb ;Adjust delay to set period (not used)

 38

 decfsz TLDEL,f
 goto ihib ;loop until delay low byte is zero
 decfsz THDEL,f
 goto nxtd ;loop until delay high byte is zero

 decfsz TLNUM,f
 goto nxtp ;loop until number low byte is zero
 decfsz THNUM,f
 goto nxtn ;loop until number highbyte is zero
 goto infin ;End of sequence

Yfin movf rcreg,w ;wait for 'X'
 xorlw 0x58
 btfss status,z
 goto Yfin
 movlw 0x00 ;turn off UART
 movwf rcsta
 call ok
 return

;*******SUB-INHIBIT******

inhibit bcf porta,5 ;Pulsing indicator LED off
 movlw 0x27 ;turn off 'Active LED'
 movwf portb
test0 btfss porte,0
 goto test0
 movf LEDnum,w
 movwf portb
 bsf porta,5 ;Pulsing indicator LED on
 return

;*******SUB-TEMPH********

temph movf adresh,w ;msb of temperature - in bank 0
 movwf txdata
 call txchar ;send msb
 return

;*******SUB-TEMPL*******

templ bsf status,rp0 ;select bank 1 to read out lsb
 bcf status,rp1
 movf adresl,w ;lsb of ad reading - in bank 1
 bcf status,rp0 ;select bank 0
 bcf status,rp1

 movwf txdata
 call txchar ;send lsb
 return

 39

;*******SUB-READ A/D*****

readad bsf status,rp0 ;select bank 1
 bcf status,rp1
 movlw b'10001110' ;RA0 set as a/d input
 movwf adcon1

 bcf status,rp0 ;select bank zero
 bcf status,rp1
 movlw b'10000001' ;Fosc32, select ad0 (RA0)
 movwf adcon0
 call msdelay ;1mS sample delay
 bsf adcon0,2 ;start conversion
 call msdelay ;1mS delay, conversion complete
 ;when bit 2 of adcon0 is clear
chkcon btfsc adcon0,2 ;bit 2 clear=conversion done
 goto chkcon
 call ok
 return ;ad value in adresh and adresl
 ;000000vv vvvvvvvv

;*******SUB-1mS DELAY******

msdelay movlw d'166' ;1mS delay
 movwf d
msloop nop
 nop
 nop
 decfsz d,1
 goto msloop
 return

;*******SUB_LOAD DAC*****

ldac movf curnth,w
 movwf chtmp
 movf curntl,w
 movwf cltmp
 bsf PORTD,0
 bsf PORTD,2
 bsf PORTD,3
 MOVLW 0x02 ;setup loop for 2 characters
 MOVWF intdex
 bcf STATUS,C
 rlf chtmp,f ;shift out msb for tx
oplop1 bcf PORTD,0 ;set clock low
 btfss STATUS,C
 bcf PORTD,1 ;set data low
 btfsc STATUS,C

 40

 bsf PORTD,1 ;set data high
 bsf PORTD,0 ;clock data into shift register
 rlf chtmp,f ;next data bit
 decfsz intdex,1
 goto oplop1
 MOVLW 0x08 ;setup loop for 8 characters
 MOVWF intdex
 bcf STATUS,C
 rlf cltmp,f ;shift out msb for tx
oplop2 bcf PORTD,0 ;set clock low
 btfss STATUS,C
 bcf PORTD,1 ;set data low
 btfsc STATUS,C
 bsf PORTD,1 ;set data high
 bsf PORTD,0 ;clock data into shift register
 rlf cltmp,f ;next data bit
 decfsz intdex,1
 goto oplop2
 bcf PORTD,2 ;load data
 bsf PORTD,2
 call ok
 return

;---

Start call nxchar ;Clear firmware UART

Main bcf PORTA,5 ;Ready LED on, Active LED off

 MOVF boxnum,w
 MOVWF tmpbox
 call rxchar
 MOVF rxdata,w
 xorwf tmpbox,w ;compare to see if box is addressed
 BTFSS status,z
 goto Main ;continue looping until addressed
 nop
 call rxchar ;check new character
 MOVF rxdata,w
 xorlw 0x41
 btfsc status,z ;jump if not 'A'
 call ok
 MOVF rxdata,0
 xorlw 0x42
 btfsc status,z ;jump if not'B'
 call heighth
 MOVF rxdata,0
 xorlw 0x43
 btfsc status,z ;jump if not'C'
 call heightl

 41

 MOVF rxdata,0
 xorlw 0x44
 btfsc status,z ;jump if not'D'
 call width
 MOVF rxdata,0
 xorlw 0x45
 btfsc status,z ;jump if not'E'
 call select
 MOVF rxdata,0
 xorlw 0x46
 btfsc status,z ;jump if not'F'
 call pulseh
 MOVF rxdata,0
 xorlw 0x47
 btfsc status,z ;jump if not'G'
 call pulsel
 MOVF rxdata,0
 xorlw 0x48
 btfsc status,z ;jump if not'H'
 call delayh
 MOVF rxdata,0
 xorlw 0x49
 btfsc status,z ;jump if not'I'
 call delayl
 MOVF rxdata,0
 xorlw 0x4A
 btfsc status,z ;jump if not'J'
 call seq
 MOVF rxdata,0
 xorlw 0x4B
 btfsc status,z ;jump if not'K'
 call contin
 MOVF rxdata,0
 xorlw 0x4C
 btfsc status,z ;jump if not'L'
 call readad
 MOVF rxdata,0
 xorlw 0x4D
 btfsc status,z ;jump if not'M'
 call temph
 MOVF rxdata,0
 xorlw 0x4E
 btfsc status,z ;jump if not'N'
 call templ
 MOVF rxdata,0
 xorlw 0x4F
 btfsc status,z ;jump if not'O'
 call ldac
 MOVF rxdata,0
 xorlw 0x50

 42

 btfsc status,z ;jump if not'P'
 call extrun
 MOVF rxdata,0
 xorlw 0x51
 btfsc status,z ;jump if not'Q'
 call ctrig
 goto Main ;wait to be addressed

;--
 END

